「物理学概論II」電磁気

電流と磁場

ビオサバールの法則、アンペールの法則

知能機械専攻

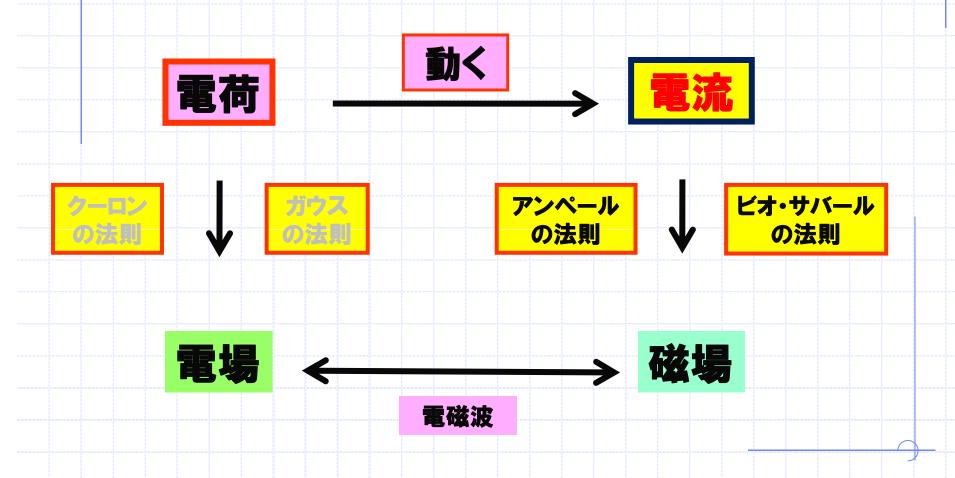
下条誠

UEC

The University of Electro-Communications Department of Mechanical Engineering & Intelligent Systems

はじめに

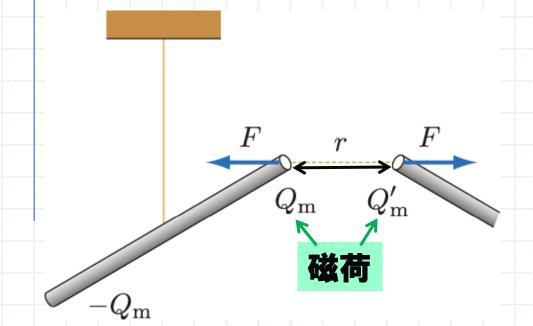
電流と磁場の話:イントロダクション



磁荷と磁界イントロ

まず始めに、磁荷と磁界の関係、ビオサバール法則、アンペールの法則について述べる

磁石と磁場



磁気力

$$F = k \frac{Q_m Q_m}{r^2}$$

$$Q_mQ_m' \succ 0$$
の場合

電荷に相当する磁荷を仮定すると、

静電気と対応しやすいため磁荷を考える

磁荷とは?

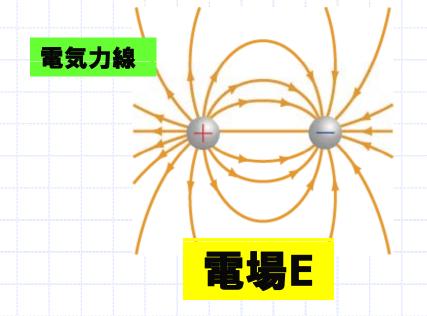
Qm

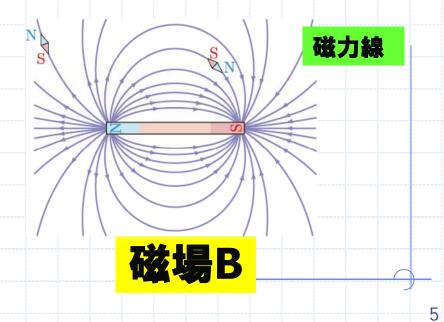
クーロンカ
$$F \propto \frac{Q_1 Q_2}{r^2}$$

$$F \propto \frac{Q_1 Q_2}{r^2}$$

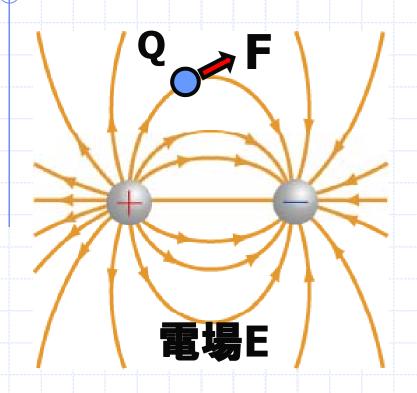
$$F \propto \frac{Q_{m1}Q_{m2}}{r^2}$$

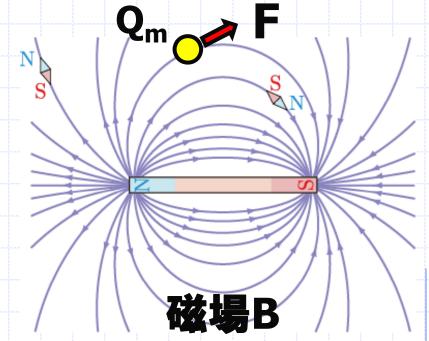
磁気力





磁場と電場のアナロジ



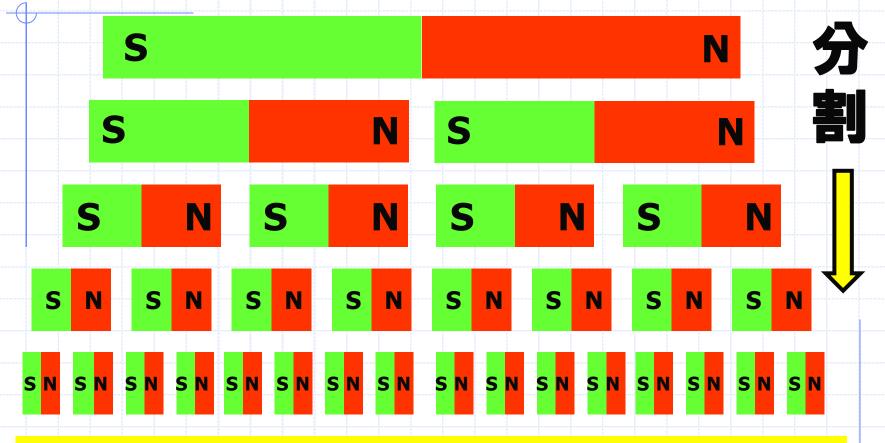


$$\mathbf{F} = Q\mathbf{E}(\mathbf{r})$$

$$\mathbf{F} = Q_m \mathbf{B}(\mathbf{r})$$

磁場B:単位 テスラ(記号T)

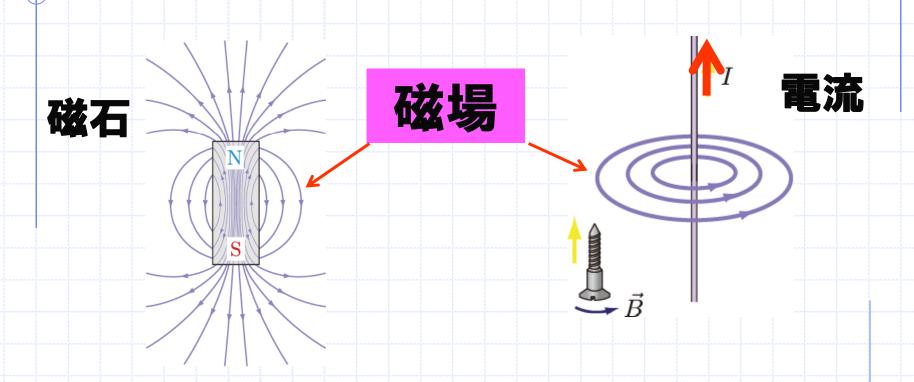
磁荷は存在する?



磁石をどれだけ細かく切っても、切った端にN極とS極が表れ、 単独でN極とS極を取り出すことはできない

磁気単極子(モノポール):磁気単極を持った粒子が存在する可能性はありますが、まだ、発見されていない.

電流と磁場



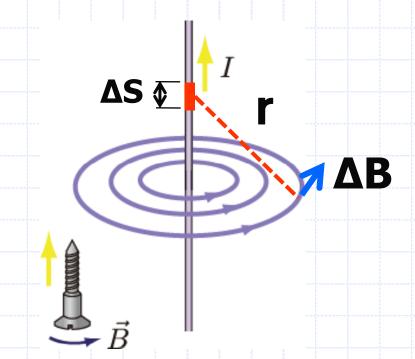
磁場は磁石だけではなく、電流によっても生じる

本講義では、

磁場は、電流によって 生じるとして、電流と 磁場の関係を述べる

ビオサバールの法則

電流によって磁場が発生



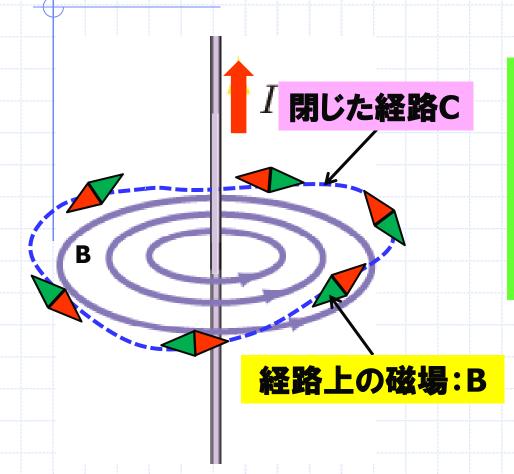
ビオサバールの法則は、 以上の関係を表したもの 電流Iが流れる導線の微小 部分△s

ΔSが磁場に与える変化ΔB

△Bは△Sからの距離に関係

$$\Delta \vec{B} = \frac{\mu_0 I \Delta \vec{s} \times \vec{r}}{4\pi r^3}$$

アンペールの法則



閉じた経路にそって磁場の大きさを積分

=

閉じた経路を貫く電流の和に 比例

数式で記述すると

$$\oint_C B_t ds = \mu_0 I$$

UEC

The University of Electro-Communications Department of Mechanical Engineering & Intelligent Systems

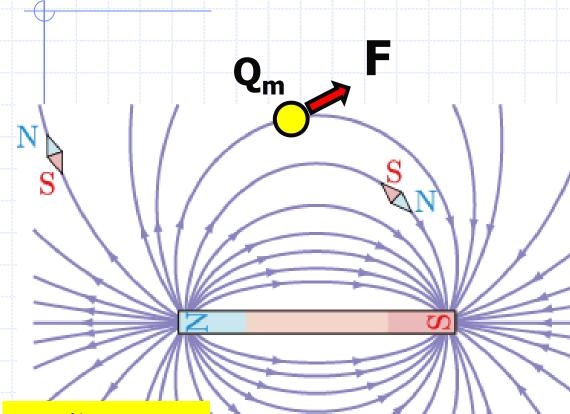
各論はじまり

磁石と磁場



理学系では「磁場」、工学系では「磁界」という

The University of Electro-Communications Department of Mechanical Engineering & Intelligent Systems



○:磁荷

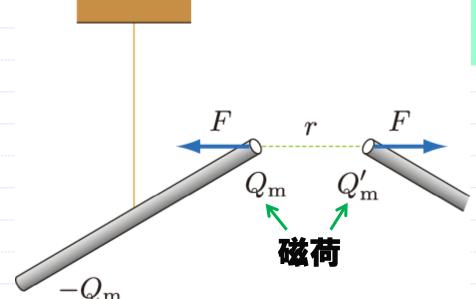
$$\mathbf{F} = Q_m \mathbf{B}(\mathbf{r})$$

磁場B

磁場Bの単位:T[テスラ]

磁荷の単位:N/T=A/m

磁場の決め方



磁荷Qmに作用する磁気力 Fを用いて磁場Bとする

$$\vec{F} = Q_m \vec{B}$$

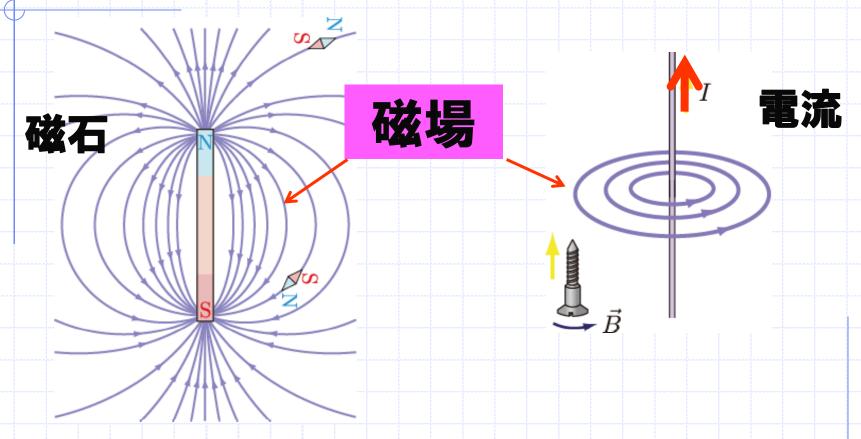
$$\vec{B} = \frac{\vec{F}}{Q_m}$$

単磁極は存在しないが、磁気作用を考える場合、 電荷に相当する磁荷を仮定すると静電気と対 応しやすいため磁荷を便宜上導入する。

B単位:テスラ[T]

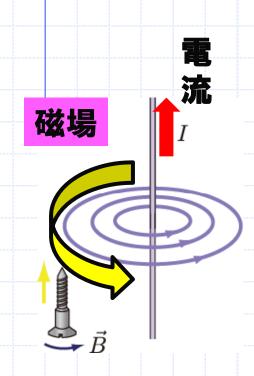
 $(T = Wb \cdot m^{-2})$

磁場(1)



磁場は磁石だけではなく、電流によっても生じる

磁場(2)電流によってできる磁場

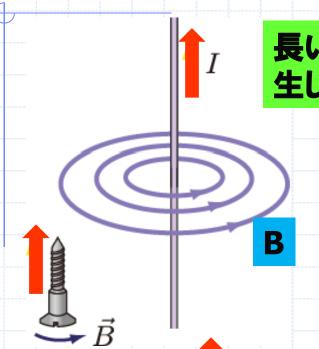


http://www.youtube.com/watch?v=yYUJ7bDmvMo

磁力線の

方向

電流の作る磁場(1)



長いまっすぐな導線に電流が流れた時に、 生じる磁場について

- ●磁力線の形状は円
- ●磁場の向きは電流の流れる 方向に進む右ねじの回る向き

電流の流 れる向き

$$B = \frac{\mu_0 I}{2\pi d}$$

$$\mu_0 = 4\pi \times 10^{-7} \ T \cdot m/A$$

真空の透磁率

18

電流の作る磁場(2)

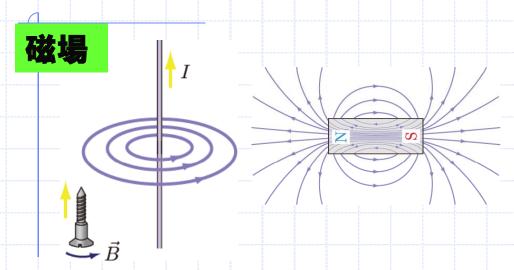
 $B = \frac{\mu_0 I}{2\pi d}$

例1

単1の乾電池の両端を少し太めの 銅線でショートさせたら5Aの電流 が流れた. 銅線から1cm離れた 所の磁場Bの強さは、

$$B = \frac{4\pi \times 10^{-7} \times 5}{2\pi \times 0.01} = 10^{-4} T$$

電流の作る磁場(3)

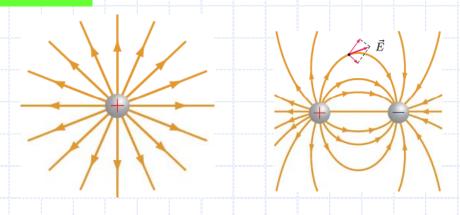


磁場Bの磁力線は始点と 終点がない閉曲線である.

電場のように湧き出し口, 吸い込み口がない

理由:磁荷がないため

電場



電気力線は始点と終点がある.

流体に例えると、

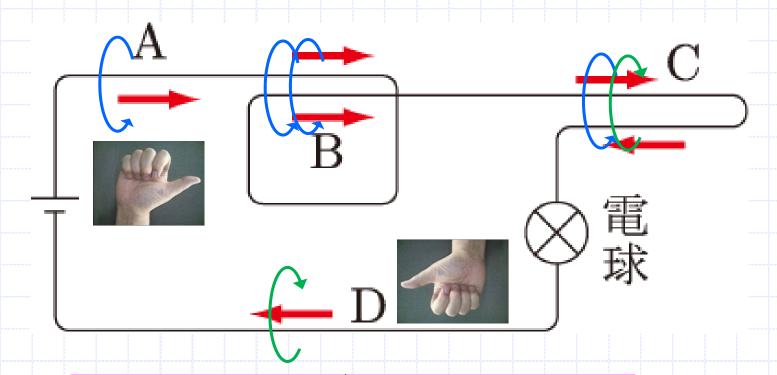
- +電荷は湧き出し口
- 電荷は吸い込み口

電気力線は流線

に相当する

電流の作る磁場(4)

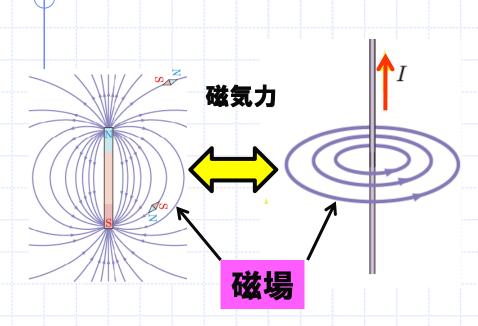
電流の作る磁場Bについても重ね合わせの原理が成り立つ



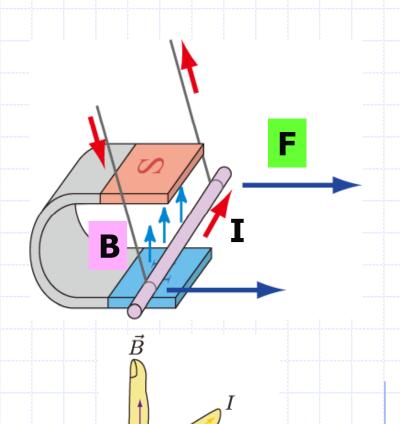
A:B:C:D

1:2:0:1

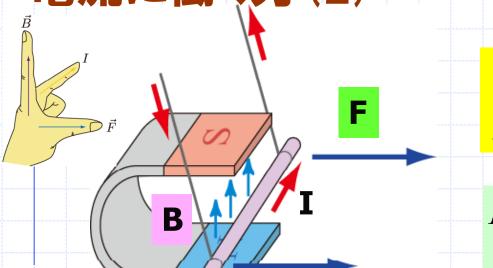
電流に働く力(1)



磁気力は磁場を 通して作用する

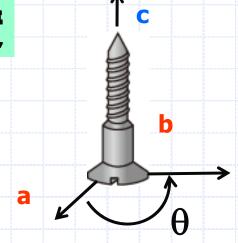


フレミングの左手の法則



IL:電流の方向を向いた 長さILのベクトル

外積

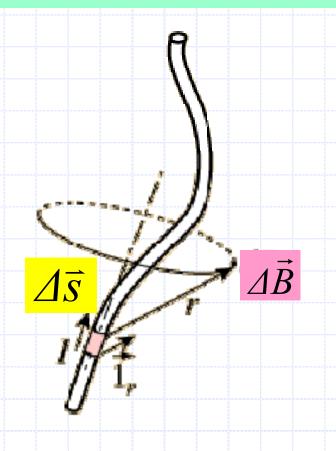


$$\vec{c} = \vec{a} \times \vec{b}$$

$$|\vec{c}| = |\vec{a} \times \vec{b}| \sin \theta$$

ビオ・サバールの法則

任意の形をした導線を流れる電流の作る磁場を求める規則



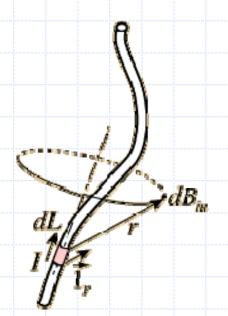
ベクトル量

$$\Delta \vec{B} = \frac{\mu_0 I \Delta \vec{s} \times \vec{r}}{4\pi r^3}$$

大きさとしては

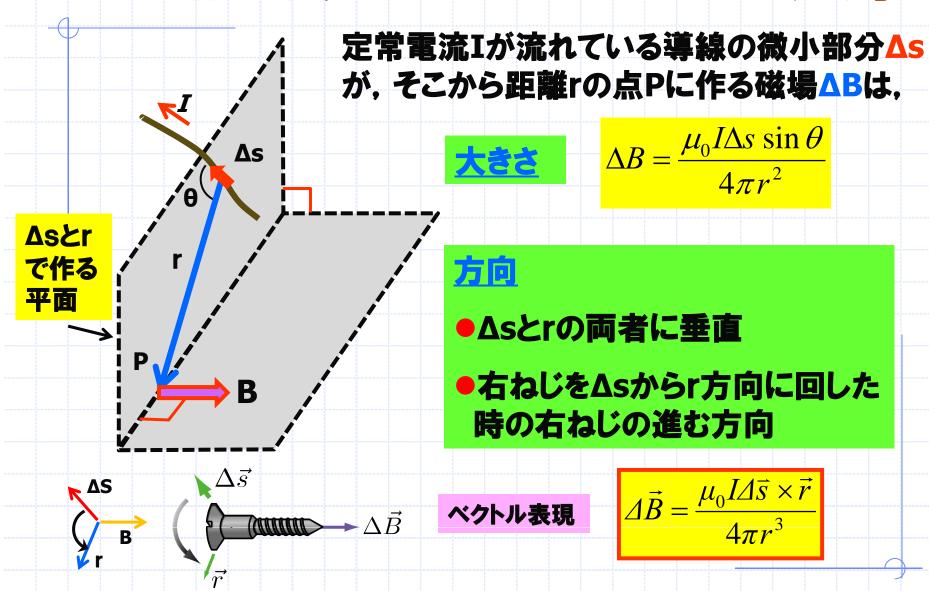
$$\Delta B = \frac{\mu_0 I \Delta s \sin \theta}{4\pi r^2}$$

ビオとサバール



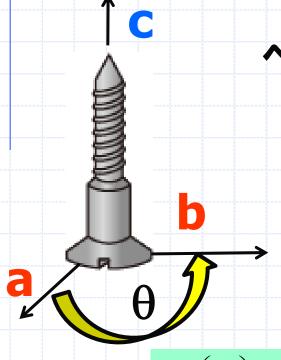
ジャン=バティスト・ビオ(Jean-Baptiste Biot、1774年 - 1862年)は、フランス の物理学者、天文学者、数学者 フェリックス・サヴァール(Félix Savart、 1791年 - 1841年)はフランスの物理 学者、外科医である。

電流の作る磁場2 ビオーサバールの法則



ベクトルの外積

2つのベクトルに対して外積は次のようになる



ベクトル量:
$$\vec{c} = \vec{a} imes \vec{b}$$

大きさ:

$$|\vec{c}| = |\vec{a} \times \vec{b}| \sin \theta$$

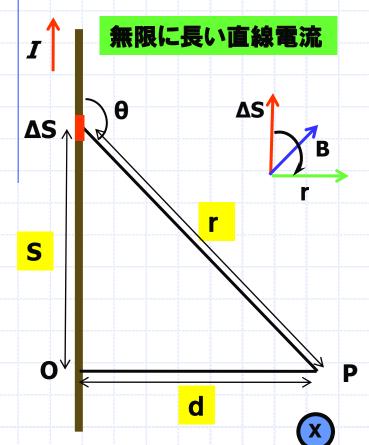
方向:

右ねじの進む方向

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\vec{a} imes \vec{b} = egin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$
 ベクトルの 成分で表示すると

ビオーサバールの法則(2)



大きさ

$$r = \frac{d}{\sin \theta} \quad s = -\frac{d}{\tan \theta}$$

$$\frac{ds}{d\theta} = \frac{d}{\sin^2 \theta}$$

$$ds = \frac{d}{\sin^2 \theta} d\theta$$

 $\Delta B = \frac{\mu_0 I \Delta s \sin \theta}{4\pi r^2}$

$$B = \frac{\mu_0}{4\pi} \int_{-\infty}^{\infty} \frac{I \sin \theta}{r^2} ds$$

$$= \frac{\mu_0}{4\pi} \int_0^{\pi} \frac{I \sin \theta}{r^2} \frac{d}{\sin^2 \theta} d\theta$$

$$= \frac{\mu_0 I}{4\pi} \int_0^{\pi} \frac{\sin \theta}{d} d\theta = \frac{\mu_0 I}{4\pi d} \left[-\cos \theta \right]_0^{\pi}$$

$$=\frac{\mu_0 I}{2\pi d}$$

ビオーサバールの法則(3)

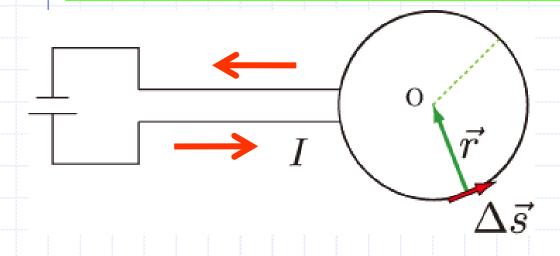
 $\Delta B = \frac{\mu_0 I \Delta s \sin \theta}{4\pi r^2}$

例題 円電流が作る磁場

1巻きの円形の銅線(コイル)を流れる電流Iによって、円の中心位置にできる磁場を求める

В

ΔS



$$B = \sum \Delta B = \frac{\mu_0 I}{4\pi R^2} \sum \Delta s$$

$$=\frac{\mu_0 I}{4\pi R^2} \times (2\pi R)$$

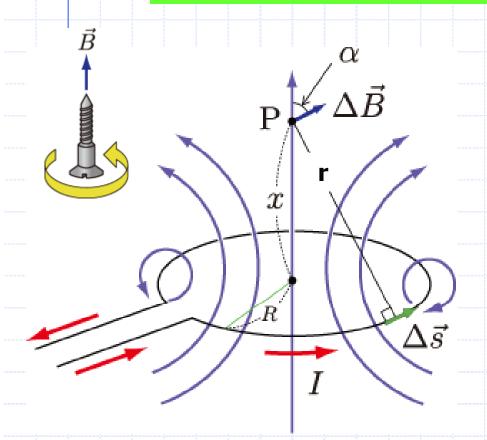
$$=\frac{\mu_0 I}{2R}$$

ビオーサバールの法則(4)

$$\Delta B = \frac{\mu_0 I \Delta s \sin \theta}{4\pi r^2}$$

例題

1巻きの円形の銅線(コイル)を流れる電流Iによって、 円の中心から距離xの点Pにできる磁場を求める



$$B = \sum \Delta B \cos \alpha$$

$$= \frac{\mu_0 I}{4\pi (R^2 + x^2)} \cos \alpha \sum \Delta s$$

$$= \frac{\mu_0 I}{4\pi (R^2 + x^2)} \times \frac{R}{(R^2 + x^2)^{1/2}} \times (2\pi R)$$

$$= \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$$

ビオーサバールの法則(5)

$$B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$$

長いソレノイドを流れる電流が作る磁場

多くの円電流の集まりとして計算.

$$B = \frac{\mu_0 n I R^2}{2} \int_{-\infty}^{\infty} \frac{dx}{\left(R^2 + x^2\right)^{3/2}}$$

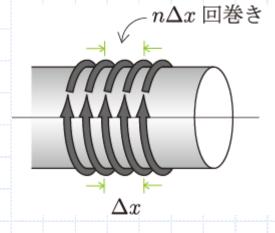
n:単位長さ当たりの巻き数

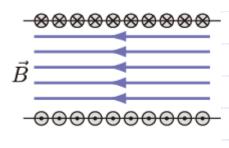
但し,幾何学 的関係から

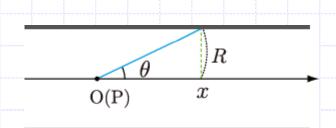
$$x = R \cot \theta$$
, $R = (R^2 + x^2)^{1/2} \sin \theta - dx = -R d\theta / \sin^2 \theta$

$$dx = -R \, d\theta / \sin^2 \theta$$

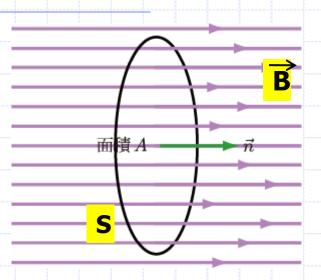
$$B = -\int_{\pi}^{0} \frac{\mu_0 nI}{2} \sin \theta d\theta = \left[\frac{\mu_0 nI}{2} \sin \theta \right]_{\pi}^{0} = \mu_0 nI$$





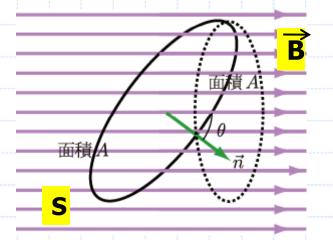


磁束と磁場Bのガウスの法則



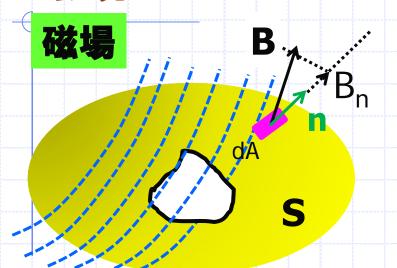
平面Sを貫く磁束

$$\Phi_B = BA\cos\theta = B_nA$$
$$\left(B_n = B\cos\theta\right)$$



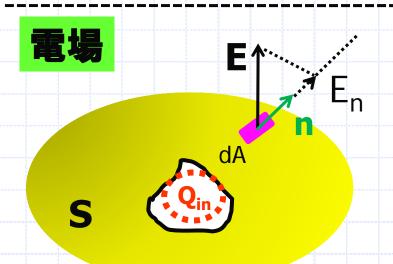
$$\Phi_B = \iint_S B_n dA$$

磁場Bのガウスの法則



磁場Bは始点も終点もなく、途切れることもない閉曲線より、閉曲面Sの面積分は

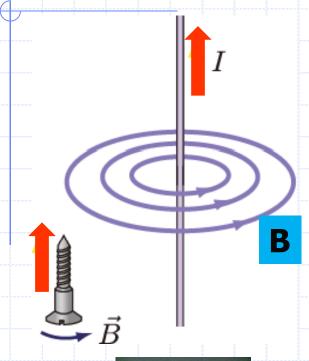
$$\iint_{S} B_{n} dA = 0$$



電場Eは電荷から電気力線が湧き出すため 閉曲面S内部にある電荷により面積分は

$$\iint_{S} E_{n} dA = \frac{Q_{in}}{\varepsilon_{0}}$$

アンペールの右ねじの法則



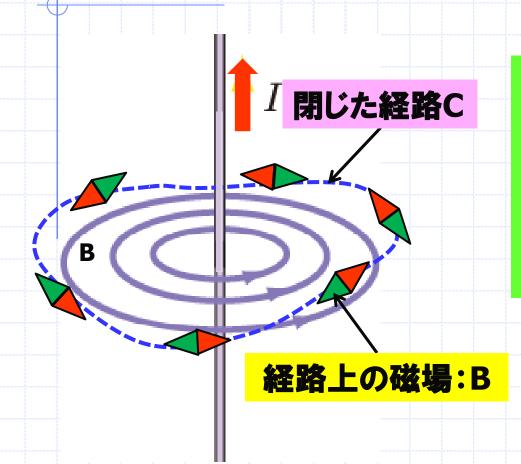
電流を流すと、電流の方向を右 ネジの進む方向として、右ネジの 回る向きに磁場が生じることを発 見した。電流とそのまわりにでき る磁場との関係をあらわす法則 を「アンペールの法則」と呼ぶ。

磁力線の 方向 右手 $B = \frac{\mu_0 I}{2\pi d}$

アンペール

アンドレ=マリ・アンペール(André-Marie Ampère, 1775年-1836年)は、フランスの物理学者、数学者。電磁気学の創始者の一人

アンペールの法則(1)



閉じた経路にそって磁場の大きさを積分

閉じた経路を貫く電流の和に 比例

数式で記述すると

$$\oint_C B_t ds = \mu_0 I$$

アンペールの法則(2)

 $\oint_C B_t ds = \mu_0 I$

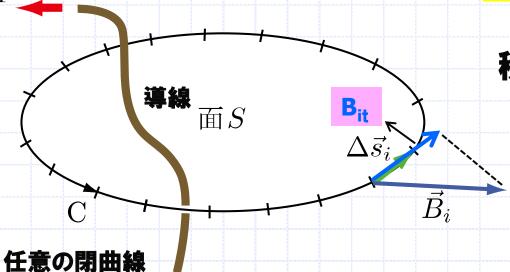
道筋の各部分の長さAs_iとその 位置で定常電流Iが作る磁場B_i の接線方向成分B_{it}の積

 $B_{it}\Delta s_i$

線積分の意味は?

これを閉曲線Cの道筋に全てについて加えると

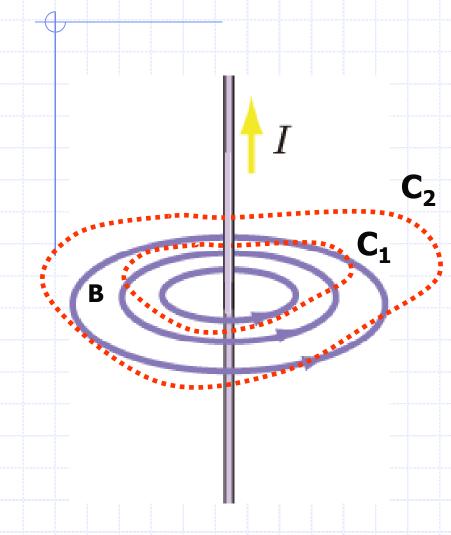
$$\lim_{\Delta s_i \to 0, N \to \infty} \sum_{i=1}^{N} B_{it} \Delta s_i = \mu_0 I$$



積分形(線積分)で表わすと

$$\oint_c B_t ds = \mu_0 I$$

アンペールの法則(3)



閉じた経路にそって磁場の大きさを積分

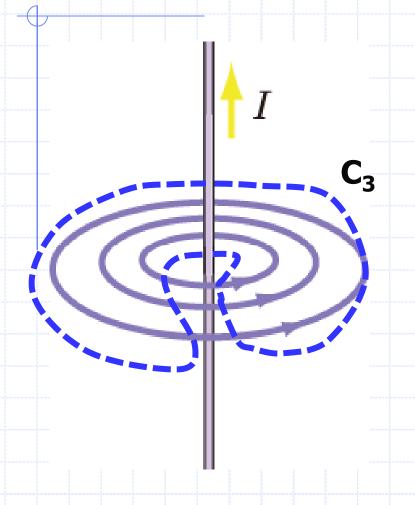
=

閉じた経路を貫く電流の和に 比例

$$\oint_{C_1} B_t ds = \mu_0 I$$

$$\oint_{C_2} B_t ds = \mu_0 I$$

アンペールの法則(3)



閉じた経路にそって磁場の大きさを積分

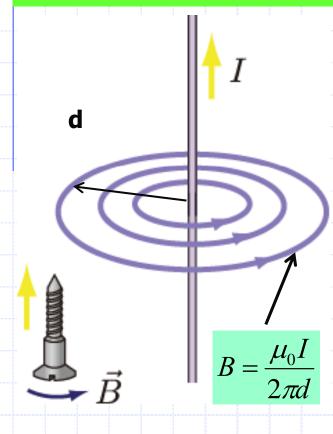
=

閉じた経路を貫く電流の和に 比例

$$\oint_{C_3} B_t ds = 0$$

アンペールの法則 例題1

例 アンペールの法則が成り立つことを確認する



半径dのところの磁場Bは

$$B = \frac{\mu_0 I}{2\pi d}$$

電流を中心とする半径dの円を一周する経路Cの長さは

 $2\pi d$

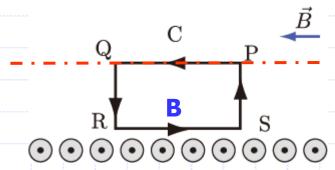
$$\oint_{c} B_{t} ds = \frac{\mu_{0} I}{2\pi d} \times (2\pi d)$$

$$= \mu_{0} I$$

アンペールの法則 例題2

$$\oint_C B_t ds = \mu_0 I$$

無限長ソレノイドの磁場B

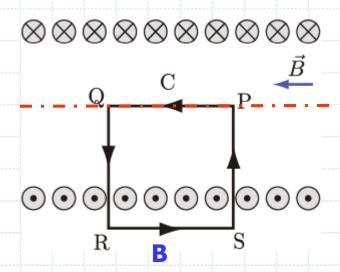


$$\oint_{c} B_{t} ds = \mu_{0} nI \cdot \overline{PQ} - B \cdot \overline{RS}$$

PQRSを貫く電流はO. 従って

$$\mu_0 nI \cdot \overline{PQ} = B \cdot \overline{RS}$$

$$\therefore B = \mu_0 nI$$



$$\oint_{c} B_{t} ds = \mu_{0} nI \cdot \overline{PQ} - B \cdot \overline{RS}$$

PQRSを貫く電流はnI・PQ. 従って

$$\mu_0 n I \cdot \overline{PQ} - B \cdot \overline{RS} = \mu_0 n I \cdot \overline{PQ}$$

$$\therefore B = 0$$

